Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Phys Chem Lett ; 12(48): 11745-11750, 2021 Dec 09.
Article in English | MEDLINE | ID: covidwho-1545576

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic represents the most severe global health crisis in modern human history. One of the major SARS-CoV-2 virulence factors is nonstructural protein 1 (Nsp1), which, outcompeting with the binding of host mRNA to the human ribosome, triggers a translation shutdown of the host immune system. Here, microsecond-long all-atom simulations of the C-terminal portion of the SARS-CoV-2/SARS-CoV Nsp1 in complex with the 40S ribosome disclose that SARS-CoV-2 Nsp1 has evolved from its SARS-CoV ortholog to more effectively hijack the ribosome by undergoing a critical switch of Q/E158 and E/Q159 residues that perfects Nsp1's interactions with the ribosome. Our outcomes offer a basis for understanding the sophisticated mechanisms underlying SARS-CoV-2 diversion and exploitation of human cell components to its deadly purposes.


Subject(s)
Molecular Dynamics Simulation , Ribosome Subunits, Small, Eukaryotic/metabolism , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Humans , Hydrogen Bonding , Protein Binding , Ribosome Subunits, Small, Eukaryotic/chemistry , SARS-CoV-2/isolation & purification , Viral Nonstructural Proteins/chemistry
2.
Cell Rep ; 37(3): 109841, 2021 10 19.
Article in English | MEDLINE | ID: covidwho-1439922

ABSTRACT

Nonstructural protein 1 (nsp1) is a coronavirus (CoV) virulence factor that restricts cellular gene expression by inhibiting translation through blocking the mRNA entry channel of the 40S ribosomal subunit and by promoting mRNA degradation. We perform a detailed structure-guided mutational analysis of severe acute respiratory syndrome (SARS)-CoV-2 nsp1, revealing insights into how it coordinates these activities against host but not viral mRNA. We find that residues in the N-terminal and central regions of nsp1 not involved in docking into the 40S mRNA entry channel nonetheless stabilize its association with the ribosome and mRNA, both enhancing its restriction of host gene expression and enabling mRNA containing the SARS-CoV-2 leader sequence to escape translational repression. These data support a model in which viral mRNA binding functionally alters the association of nsp1 with the ribosome, which has implications for drug targeting and understanding how engineered or emerging mutations in SARS-CoV-2 nsp1 could attenuate the virus.


Subject(s)
COVID-19/genetics , Gene Expression Regulation, Viral , SARS-CoV-2/genetics , Viral Nonstructural Proteins/metabolism , Anisotropy , COVID-19/immunology , DNA Mutational Analysis , Female , Gene Expression Profiling , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Kinetics , Mutation , Phenotype , Point Mutation , Protein Biosynthesis , Protein Domains , RNA Stability , Ribosome Subunits, Small, Eukaryotic/metabolism , Ribosomes/metabolism
3.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: covidwho-1042832

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta-CoV that recently emerged as a human pathogen and is the causative agent of the COVID-19 pandemic. A molecular framework of how the virus manipulates host cellular machinery to facilitate infection remains unclear. Here, we focus on SARS-CoV-2 NSP1, which is proposed to be a virulence factor that inhibits protein synthesis by directly binding the human ribosome. We demonstrate biochemically that NSP1 inhibits translation of model human and SARS-CoV-2 messenger RNAs (mRNAs). NSP1 specifically binds to the small (40S) ribosomal subunit, which is required for translation inhibition. Using single-molecule fluorescence assays to monitor NSP1-40S subunit binding in real time, we determine that eukaryotic translation initiation factors (eIFs) allosterically modulate the interaction of NSP1 with ribosomal preinitiation complexes in the absence of mRNA. We further elucidate that NSP1 competes with RNA segments downstream of the start codon to bind the 40S subunit and that the protein is unable to associate rapidly with 80S ribosomes assembled on an mRNA. Collectively, our findings support a model where NSP1 proteins from viruses in at least two subgenera of beta-CoVs associate with the open head conformation of the 40S subunit to inhibit an early step of translation, by preventing accommodation of mRNA within the entry channel.


Subject(s)
COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , RNA, Messenger/metabolism , Ribosomes/metabolism , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Eukaryotic Initiation Factors/metabolism , Humans , Pandemics , Peptide Chain Initiation, Translational/genetics , Protein Biosynthesis , Protein Processing, Post-Translational , RNA, Messenger/genetics , RNA, Viral/genetics , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosome Subunits, Small, Eukaryotic/metabolism , Ribosomes/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Viral Nonstructural Proteins/genetics
4.
Mol Cell ; 80(6): 1055-1066.e6, 2020 12 17.
Article in English | MEDLINE | ID: covidwho-1009762

ABSTRACT

The causative virus of the COVID-19 pandemic, SARS-CoV-2, uses its nonstructural protein 1 (Nsp1) to suppress cellular, but not viral, protein synthesis through yet unknown mechanisms. We show here that among all viral proteins, Nsp1 has the largest impact on host viability in the cells of human lung origin. Differential expression analysis of mRNA-seq data revealed that Nsp1 broadly alters the cellular transcriptome. Our cryo-EM structure of the Nsp1-40S ribosome complex shows that Nsp1 inhibits translation by plugging the mRNA entry channel of the 40S. We also determined the structure of the 48S preinitiation complex formed by Nsp1, 40S, and the cricket paralysis virus internal ribosome entry site (IRES) RNA, which shows that it is nonfunctional because of the incorrect position of the mRNA 3' region. Our results elucidate the mechanism of host translation inhibition by SARS-CoV-2 and advance understanding of the impacts from a major pathogenicity factor of SARS-CoV-2.


Subject(s)
COVID-19/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , RNA, Viral/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Viral Nonstructural Proteins/metabolism , Animals , COVID-19/genetics , COVID-19/pathology , Chlorocebus aethiops , Cryoelectron Microscopy , Humans , RNA, Messenger/genetics , RNA, Viral/genetics , Ribosome Subunits, Small, Eukaryotic/genetics , Ribosome Subunits, Small, Eukaryotic/metabolism , Ribosome Subunits, Small, Eukaryotic/ultrastructure , Ribosome Subunits, Small, Eukaryotic/virology , SARS-CoV-2/genetics , SARS-CoV-2/ultrastructure , Vero Cells , Viral Nonstructural Proteins/genetics
5.
J Gen Virol ; 102(1)2021 01.
Article in English | MEDLINE | ID: covidwho-910383

ABSTRACT

The emerging pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused social and economic disruption worldwide, infecting over 9.0 million people and killing over 469 000 by 24 June 2020. Unfortunately, no vaccine or antiviral drug that completely eliminates the transmissible disease coronavirus disease 2019 (COVID-19) has been developed to date. Given that coronavirus nonstructural protein 1 (nsp1) is a good target for attenuated vaccines, it is of great significance to explore the detailed characteristics of SARS-CoV-2 nsp1. Here, we first confirmed that SARS-CoV-2 nsp1 had a conserved function similar to that of SARS-CoV nsp1 in inhibiting host-protein synthesis and showed greater inhibition efficiency, as revealed by ribopuromycylation and Renilla luciferase (Rluc) reporter assays. Specifically, bioinformatics and biochemical experiments showed that by interacting with 40S ribosomal subunit, the lysine located at amino acid 164 (K164) was the key residue that enabled SARS-CoV-2 nsp1 to suppress host gene expression. Furthermore, as an inhibitor of host-protein expression, SARS-CoV-2 nsp1 contributed to cell-cycle arrest in G0/G1 phase, which might provide a favourable environment for virus production. Taken together, this research uncovered the detailed mechanism by which SARS-CoV-2 nsp1 K164 inhibited host gene expression, laying the foundation for the development of attenuated vaccines based on nsp1 modification.


Subject(s)
Host-Pathogen Interactions/genetics , Lysine/genetics , Ribosomal Proteins/genetics , Ribosome Subunits, Small, Eukaryotic/genetics , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , Amino Acid Sequence , Amino Acid Substitution , Computational Biology/methods , G1 Phase Cell Cycle Checkpoints/genetics , Gene Expression Regulation , Genes, Reporter , HEK293 Cells , Humans , Luciferases/genetics , Luciferases/metabolism , Lysine/metabolism , Mutation , Ribosomal Proteins/antagonists & inhibitors , Ribosomal Proteins/metabolism , Ribosome Subunits, Small, Eukaryotic/metabolism , Ribosome Subunits, Small, Eukaryotic/virology , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction , Viral Nonstructural Proteins/metabolism
6.
J Phys Chem Lett ; 11(22): 9659-9668, 2020 Nov 19.
Article in English | MEDLINE | ID: covidwho-899848

ABSTRACT

SARS-CoV-2 is the cause of the ongoing Coronavirus disease 19 (COVID-19) pandemic around the world causing pneumonia and lower respiratory tract infections. In understanding the SARS-CoV-2 pathogenicity and mechanism of action, it is essential to depict the full repertoire of expressed viral proteins. The recent biological studies have highlighted the leader protein Nsp1 of SARS-CoV-2 importance in shutting down the host protein production. Besides, it still enigmatic how Nsp1 regulates for translation. Here we report the novel structure of Nsp1 from SARS-CoV-2 in complex with the SL1 region of 5'UTR of SARS-CoV-2, and its factual interaction is corroborated with enzyme kinetics and experimental binding affinity studies. The studies also address how leader protein Nsp1 of SARS-CoV-2 recognizes its self RNA toward translational regulation by further recruitment of the 40S ribosome. With the aid of molecular dynamics and simulations, we also demonstrated the real-time stability and functional dynamics of the Nsp1/SL1 complex. The studies also report the potential inhibitors and their mode of action to block viral protein/RNA complex formation. This enhance our understanding of the mechanism of the first viral protein Nsp1 synthesized in the human cell to regulate the translation of self and host. Understanding the structure and mechanism of SARS-CoV-2 Nsp1 and its interplay with the viral RNA and ribosome will open the arena for exploring the development of live attenuated vaccines and effective therapeutic targets for this disease.


Subject(s)
5' Untranslated Regions , RNA, Viral/metabolism , SARS-CoV-2/chemistry , Viral Nonstructural Proteins/metabolism , COVID-19 Vaccines , Depsides/chemistry , Depsides/metabolism , Glycyrrhizic Acid/chemistry , Glycyrrhizic Acid/metabolism , Lactones/chemistry , Lactones/metabolism , Molecular Dynamics Simulation , Pregnatrienes/chemistry , Pregnatrienes/metabolism , Protein Binding/drug effects , RNA, Viral/chemistry , Ribosome Subunits, Small, Eukaryotic/chemistry , Ribosome Subunits, Small, Eukaryotic/metabolism , SARS-CoV-2/pathogenicity , Salicylates/chemistry , Salicylates/metabolism , Viral Nonstructural Proteins/chemistry , Virulence
7.
Nat Struct Mol Biol ; 27(10): 959-966, 2020 10.
Article in English | MEDLINE | ID: covidwho-752470

ABSTRACT

The SARS-CoV-2 non-structural protein 1 (Nsp1), also referred to as the host shutoff factor, suppresses host innate immune functions. By combining cryo-electron microscopy and biochemistry, we show that SARS-CoV-2 Nsp1 binds to the human 40S subunit in ribosomal complexes, including the 43S pre-initiation complex and the non-translating 80S ribosome. The protein inserts its C-terminal domain into the mRNA channel, where it interferes with mRNA binding. We observe translation inhibition in the presence of Nsp1 in an in vitro translation system and in human cells. Based on the high-resolution structure of the 40S-Nsp1 complex, we identify residues of Nsp1 crucial for mediating translation inhibition. We further show that the full-length 5' untranslated region of the genomic viral mRNA stimulates translation in vitro, suggesting that SARS-CoV-2 combines global inhibition of translation by Nsp1 with efficient translation of the viral mRNA to allow expression of viral genes.


Subject(s)
Betacoronavirus/chemistry , Betacoronavirus/metabolism , Protein Biosynthesis , RNA, Messenger/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , 5' Untranslated Regions , Betacoronavirus/genetics , Cryoelectron Microscopy , HEK293 Cells , HeLa Cells , Host-Pathogen Interactions/physiology , Humans , Models, Molecular , Mutation , Protein Conformation , Protein Domains , RNA, Messenger/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Ribosome Subunits, Small, Eukaryotic/genetics , Ribosome Subunits, Small, Eukaryotic/metabolism , SARS-CoV-2 , Viral Nonstructural Proteins/genetics
8.
Science ; 369(6508): 1249-1255, 2020 09 04.
Article in English | MEDLINE | ID: covidwho-654484

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic. A major virulence factor of SARS-CoVs is the nonstructural protein 1 (Nsp1), which suppresses host gene expression by ribosome association. Here, we show that Nsp1 from SARS-CoV-2 binds to the 40S ribosomal subunit, resulting in shutdown of messenger RNA (mRNA) translation both in vitro and in cells. Structural analysis by cryo-electron microscopy of in vitro-reconstituted Nsp1-40S and various native Nsp1-40S and -80S complexes revealed that the Nsp1 C terminus binds to and obstructs the mRNA entry tunnel. Thereby, Nsp1 effectively blocks retinoic acid-inducible gene I-dependent innate immune responses that would otherwise facilitate clearance of the infection. Thus, the structural characterization of the inhibitory mechanism of Nsp1 may aid structure-based drug design against SARS-CoV-2.


Subject(s)
Betacoronavirus/chemistry , Immune Evasion , Immunity, Innate , Protein Biosynthesis , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Betacoronavirus/immunology , Betacoronavirus/metabolism , Betacoronavirus/physiology , Binding Sites , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cryoelectron Microscopy , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Humans , Interferon-beta/genetics , Interferon-beta/metabolism , Models, Molecular , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs , Protein Structure, Secondary , RNA, Messenger/metabolism , Receptors, Immunologic , Ribosome Subunits, Small, Eukaryotic/chemistry , Ribosome Subunits, Small, Eukaryotic/metabolism , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL